Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Normah Awang, Ibrahim Baba, M. Sukeri M. Yusof and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.081$
Data-to-parameter ratio $=23.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(N-cyclohexyl- N -methyldithiocarbamato)dimethyltin(IV)

The molecule of the title compound, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NS}_{2}\right)_{2}\right]$, occupies a special position on a crystallographic mirror plane which coincides with the plane of the dimethyltin group. The severely distorted coordination tetrahedron formed by the four strong bonds of the Sn atom $[\mathrm{Sn}-\mathrm{C}=2.101$ (4) and 2.108 (5) $\AA, \mathrm{Sn}-\mathrm{S}=2.5169$ (7) $\AA, \mathrm{C}-\mathrm{Sn}-\mathrm{C}=137.0(2)^{\circ}$ and $\mathrm{S}-\mathrm{Sn}-\mathrm{S}=84.46(3)^{\circ}$] is expanded to a distorted octahedron due to weak intramolecular $\mathrm{Sn} \cdots \mathrm{S}$ interactions of 2.9785 (6) Å.

Comment

The comparison of the geometry of numerous bis(dithiocarbamato)dimethyltin and bis(dithiocarbamato)diphenyltin complexes reveals interesting differences. It turns out that dimethyltin complexes show, in most cases, substantially larger $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles than their diphenyltin analogues [e.g. $136.0(1)^{\circ}$ in $\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}$ (Kimura et al., 1972) and 101.4 (6) ${ }^{\circ}$ in $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ (Lindley \& Carr, 1974)]. Furthermore, in diphenyltin complexes, one of the ligands usually chelates the Sn atom symmetrically, whereas the other ligand shows a considerable difference in the $\mathrm{Sn}-\mathrm{S}$ bond distances. By contrast, in dimethyltin complexes, both ligands display the same coordination pattern, with one shorter $\mathrm{Sn}-\mathrm{S}$ bond and one longer $\mathrm{Sn} \cdots \mathrm{S}$ 'secondary' contact.

(I)

The geometry of the title compound, (I), is typical for the bis(dithiocarbamato)dimethyltin complexes and illustrates the features outlined above. Just as in its analogue, bis[N, N-bis(2hydroxyethyl)dithiocarbamato]dimethyltin(IV) (Farina et al., 2000), molecule (I) has a crystallographic mirror plane, coinciding with the $\mathrm{C} 9 / \mathrm{Sn} 1 / \mathrm{C} 10$ plane. The severely distorted coordination tetrahedron formed by the four strong bonds of the Sn atom $[\mathrm{Sn} 1-\mathrm{C} 9=2.101$ (4), $\mathrm{Sn} 1-\mathrm{C} 10=2.108$ (5) and $\mathrm{Sn} 1-\mathrm{S} 1=2.5169(7) \AA$ © $\mathrm{C} 9-\mathrm{Sn} 1-\mathrm{C} 10=137.0(2)^{\circ}$ and $\mathrm{S} 1-$ $\mathrm{Sn} 1-\mathrm{S} 1^{\mathrm{i}}=84.46(3)^{\circ}$; symmetry code: (i) $\left.x, \frac{3}{2}-y, z\right]$ is expanded to a distorted octahedron due to weak intramolecular $\mathrm{Sn} 1 \cdots \mathrm{~S} 2$ interactions of 2.9785 (6) \AA, the $\mathrm{S} 2-\mathrm{Sn} 1-\mathrm{S} 2^{\mathrm{i}}$ angle being $146.35(2)^{\circ}$.

The Sn atom shows a very small displacement from the plane of the coordinating atoms $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 1 A$ and $\mathrm{S} 2 A$ [0.0048 (8) \AA]; the four-membered chelate ring is almost planar and the torsion angle $\mathrm{Sn} 1-\mathrm{S} 1-\mathrm{C} 8-\mathrm{S} 2$ is $-6.89(15)^{\circ}$.

Received 3 March 2003
Accepted 12 May 2003
Online 16 May 2003

Experimental

To a solution of N-methylcyclohexylamine ($3.9 \mathrm{ml}, 0.04 \mathrm{~mol}$) in ethanol was added, with stirring at 273 K , carbon disulfide (1.8 ml , $0.03 \mathrm{~mol})$. After stirring for $2 \mathrm{~h}, 3.295 \mathrm{~g}(0.015 \mathrm{~mol})$ of dimethyl$\operatorname{tin}(\mathrm{IV})$ chloride (10.00 ml) was added dropwise to the mixture. The mixture was then stirred vigorously for 1 h . The resulting white solid was recrystallized from chloroform.

Crystal data
$\left[\mathrm{Sn}^{\left.\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NS}_{2}\right)_{2}\right]}\right.$
$M_{r}=525.40$
Orthorhombic, Pnma
$a=13.2000(9) \AA$ 。
$b=19.9650(14) \AA$
$c=8.9503(6) \AA$
$V=2358.7(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 4467
reflections
$\theta=2.0-27.6^{\circ}$
$\mu=1.44 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, light yellow
$0.27 \times 0.22 \times 0.16 \mathrm{~mm}$
$D_{x}=1.480 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD area-	2795 independent reflections
detector diffractometer	2441 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.029$
Absorption correction: multi-scan	$\theta_{\max }=27.6^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-17 \rightarrow 16$
$T_{\min }=0.696, T_{\max }=0.802$	$k=-25 \rightarrow 25$
15359 measured reflections	$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.081$
$S=1.06$
2795 reflections
118 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0415 P)^{2}\right. \\
& \quad+0.8626 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.74 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Sn1-S1	$2.5169(7)$	S2-C8	$1.693(3)$
$\mathrm{Sn} 1-\mathrm{S} 2$	$2.9785(6)$	$\mathrm{C} 6-\mathrm{N} 1$	$1.482(3)$
$\mathrm{Sn} 1-\mathrm{C} 9$	$2.101(4)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.457(3)$
$\mathrm{Sn} 1-\mathrm{C} 10$	$2.108(5)$	$\mathrm{C} 8-\mathrm{N} 1$	$1.330(3)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.748(2)$		
$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{S} 1^{\mathrm{i}}$	$84.46(3)$	$\mathrm{C} 10-\mathrm{Sn} 1-\mathrm{S} 1$	$107.28(10)$
$\mathrm{S} 2-\mathrm{Sn} 1-\mathrm{S} 2^{\mathrm{i}}$	$146.35(2)$	$\mathrm{C} 8-\mathrm{S} 1-\mathrm{Sn} 1$	$95.09(8)$
$\mathrm{C} 9-\mathrm{Sn} 1-\mathrm{C} 10$	$137.0(2)$	$\mathrm{S} 2-\mathrm{C} 8-\mathrm{S} 1$	$118.81(13)$
$\mathrm{C} 9-\mathrm{Sn} 1-\mathrm{S} 1$	$104.23(13)$		

Symmetry code: (i) $x, \frac{3}{2}-y, z$.

Figure 1
The molecular structure of the title compound, (I), with 50% probability displacement ellipsoids

After their location in a difference map, all H atoms were placed geometrically at ideal positions and allowed to ride on the parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$. However, the H atoms at C 9 and C10 were located in the map, refined initially, and then constrained.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grants IRPA No. 09-02-02-0048-EA144.

References

Farina, Y., Othman, A. H., Baba, I., Sivakumar, K., Fun, H.-K. \& Ng, S. W. (2000). Acta Cryst. C56, e84-e85.

Kimura, T., Yasuoko, N., Kasai, N. \& Kakudo, N. (1972). Bull. Chem. Soc. Jpn, 45, 1649-1654.
Lindley, P. F. \& Carr, P. (1974). J. Mol. Struct. 4, 173-185.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

